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THE PROBLEM OF SELECTING A ZERO APPROXIMATION FOR
THE ANGULAR POSITION OF AN ORIENTED SATELLITE
USING NON-DIPOLE APPROXIMATION OF THE
GEOMAGNETIC FIELD

V. 5. Novoselov

1. The Reguired Number of Terms of Expansion /139
in the Trigonometric Approximation of Projections
of Geomagnetic Field Intensity

The investigation conducted in study [l1] showed that by
using a trigonometric approximation we can derive rather simple
formulas for the zero approximation of orientation angles. If we
retain terms of the second power in the approximating formulas for
the angles, then terms up to the third power exclusively in Hoo
H _and H, will have rather large coefficients. The research stated
in study {2] shows that projections of intensity have in the ap-
proximating formulas terms of power one greater than the greatest

power of the polynomial of trigonomeﬁﬁic approximation of the

angles of ‘AES position.

The question arises as to what order the coefficients of
trigonomettic approximation of intensity projections of the geo-
magnetic field have under actual AES flight conditions. An ex~
planation of this gquestion was given by the following numerical
experiment. A program of statistical smoothing to the tenth power
exclusively was developed. Then statistical smoothing for two
oriented satellites in circular orbits (virtually circular) at
;@Iﬁi%ﬁéé%f\of 250~600 cm was carried out.

Analysis of the results obtained shows that the most sub-
stantial coefficients on the order of 0.01 have only terms up to

the third power. This affirms that the suggestion of smoothing
. 1



of orientation angles in terms of trigonometric polynomials by
powers of the argument of latitude to the second power exclusively
for low satellites is totally acceptable. This analysis showed
further that the largest coefficients on the order of 0.1 have
terms corresponding to the dipole approximation of the geomagnetic
field. But non-dipole coefficiénts Hgk of the model of the field
have the same order as the corresponding coefficients Hip for read-
ings of magnetometric sensors. Since the methods of selection

of the zero approximation substantially use all Hixr then to raise
the accuracy and reliability of the definition of the zero approx-
imation we must use transformations in study [1] to substitute an /140
approximating model (as follows) for the dipole model of the field:

3
- 3 -l . g )
He=Hh -+ D) (Hign sin un+Hi i cos ni),
=1
-3

Hy M+ 2 AHE 2w sin a1+ HS pn 11 COS BU),

n+1 . (l)

8 .
Heo=Hu- 5 (H320sin mn - Hiz o €08 na).

2. Algorithm of Solution of the Problem to
Within Three Additionally Assigned Coefficients

Civen for the selected orbit of an actual AES that we have
conducted statistical smoothing of the model of the geomagnetic
field in terms of formulas (1). Given further that we conduct
statistical processing of magnetometer readings by formulas of

the type (5)-(7) of study [2] with retention of the basic terms

] —

Ho=H, + ::1 (M 20 sIn 1z - H, 5,

=

-1 CO8 1),
3
-l N . .
Ho=Hy+ }-ll (Haun sin a4 Hooy o 08 i, : (2)
n=

2
W
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n=1

Ho=Hy + 2 (Haz S04 Faga 1 €05 na).



For aircraft angles of orientation, the formulas of transfer
from projection of geomagnetic intensity Qﬁiqrqﬁb}tal axes to pro-
jections of intensity onto the axes of constructive axes will be

written thus:

H,=H, cos?cos i-H,, sind cos I=—H,, sin?,
Hy=H; (cosbsinbsinyg—sinycos¢)--Hy (Sinhsin sinp 4
L cos b cos @)+ Hy cos b sin g, (3)
H,=H, (cos vsinlicos ¢-+sinysin$)4-H,, (sindsinfcos §—
—cospsing) -+ Hy Cosbeosg.

In order to explain the theoretical aspect in using non-
linear equations (3), we will limit ourselves in these eguations
to quadratic terms relative to values of orientation angles

L3

1= He, (1 ‘T‘———" ) ‘}‘Hyo —Hze
Hy= He (=1 894 Hy, (1~ G =5 ) o Happ, (4)

H e o 049 o, (984 A (TG =5 ).

Let us assume the following trigonometric approximation for /141
the angles:

2
th o
.J‘—Dll‘f" 4_: (D] om 51n m!t D1,2m+1 Co% mu)

P
p==Ly E_- (D2:2m sin mi4-Ds 51, c0§ me), (3}
3

o B=Dg s ¥ P (Ds,ymsmma D~2m+1 cos 7).
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If expressions (5) are substituted in relation (4), then

x0' HyO'

will be trigonometric polynomials, containing trigonometric func-

coefficients in H H,, ©on the right sides of relations (4)

tions of the argument of latitude to the fourth power. Here we
must use the following elementary formulas of trigonometry:

. . | L RPN S y
sin nusinmu= 5 cos (—rm) 11— & o8 (a-m)

cos na sin mip= —;— sin (A+m)u— -;— §in (i) &, (6)
|

sif g cos me = -5 sln (r4-m) i F 5 sin (n—rt)u,

COS 717 COS MU = % cos (n—m)ut - cos (a4 m) .

e ——— b o

Let us then substitute in the transformed equations (4) the notions
of (1) and (2). On the left of the new equations we will have the
trigonometric polynomials to thei%h@rd power; on the right--to the
seventh.

Le us equate the left and right in the obtained identities
for the coefficients with identical trigonometric functions. We
will derive 45 equations which contain 15 unknown coefficients of
trigonometric approximation of angles Dpl' mezm' Dp, _— (p =
=1, 2, 3) both linearly and in the form of a quadratic representa-
tion {the product of two coefficients and squares of the coeffi-

cients).

In the phase of oriented motion, the orientation angles are
on the order of 5-10°, i.e., on the order of 0.1. Thus the main
terms will be linear. The linear parts of these equations are de-

rived if we ignore the quadratic terms in formulas (4):

4 _ -



‘ Hx=f'f—.ru+qu'fi’““Héu§; '
Hym—H, g+ Hy  Heg,

R (7
“fﬁ%ﬁ%?*ﬁﬁ+h%:

Let us substitute in (7) expressions (1) and (5) and use
formulas (6). We cite for example the first of the derived rela- /142

tionships:

- ) 2 - [ .
H,r:H?I +D11H51 ;Dsngl + _Z! sin ma (Hﬁ2m+D1IH§,2m—
Foged :

2
. —DuHfom~+ Dl — Do ) + 21 cos mu (M emyq+
: m=

+D11H3 sm1 Dyl om 11+ D1 gm11H5 —Ds o 1 HIY+
+S]n3ﬂ (H1 5+D11H DS[H36)+COS 3“(H]7+D1]H27—‘

[}

—D31H37)+ 5 2 2 SinL (2— 1) 1 (D4 iFH8 30— DaoiaFfhon —

A=lm=1

~ DyonFthonsi+ Dasmlaonsd -+ 2 2 cos(n ~m)ux

n=lm=

XKDy, 2mH2 2:: D30, 13, °n+Dl sm+1H 780 +1“‘D3 emt+1H 3 2n41) +
+5 E 2 51n(“+”1)u(D1zmH22n+1 DB?mH3?n+l+

n=lm= 1

1
+D1 :m+1H" Qﬂ‘D32m+1H3gn '?2—2 2 COSs (n-l—m)u}(

n=1m=1

¢ X(—Dh om0t DyopfT0n+ Dy i ioni1— Daonifliae)-

1

4

(8)
As a result of egquating terms with like trigonometric func-
' tions, we will have 33 linear equations to define 15 unknown co-~
efficients Dpl' Pp;Zm' Dp,2m+l'
These equations will be rather unwieldy. For example, let.

us write the first two eguations:

1
= —a—\— _— -

Hu—-Hll‘l‘DnH“’l + "D12H32+‘ D13H23 + 2 D14H24+

\ oy Digtlls— Dufh ~ g Daff— 3 Dyt (9)
! ‘ 1
: -5 Da_qf_]'gq - '—;“_DasH:‘JIEQ

4



H]Q:Hf2+D11H32+D]_2 (Hgl __;“ Hgs) +%D13H§4+ 7
i o .
+4 Dy (Hm«HﬂTH-L Dys (Hy—Hp)—

—DyH3y~Dyp (Hh — )—~—D33Ha4
] .
DR )~ Do (- Hh ), (10)
But not all walues of H0 HO I-I‘0 on the rf@ht sides
- p,1” "p,2n" Tp,2n+l T

of the derived egquations will be of one order. As we showed in

section 1, the coefficients of a dipole approximation Hg 37 Hg 17 /14
0

H3,2
order of 0.01. The unknown coefficients of the trigonometric ap-

have an order of 0.1, while the other coefficients have an

proximation also have an order of 0.01. Since the quadratic terms
relative to these unknowns have already been omitted, i.e., we
omitted terms in the eguations on the order of 0,001, then in the
derived equations we should omit terms orl’ the order 0.001. This
means that the products of unknowns multiplied by non-dipole co-
efficients of approximation of intensity projections of the geo-
magnetic field onto the axes of an orbital 'system of coordinates

must be omitted.

We will find the following equations:
D“H&HLD?QH%:HH“H?;, -
Doty — Dy HS 4 - Dasfﬁz‘Hu-Hu,

Dy ’-’l_""‘Dst;Hsziffw—H%,
D3y — D%Hagu‘ 14_H°4,1

-

) (11)
D15H2l' “.'2—D32H32:H15_H?5’
1. )
— "‘Dgsf{ozrsz_.;Hoﬁ,
DMHC*E“‘H]T—H:?, .
DIaHsa—‘Dﬂng———? {Hy— 21)
, Dyffis— 21_).21H§2+025H32——2 (Ho—H3,),
b 2Dyt DigHly—Dy Hay=—2 (Hys— HYy),
‘ ‘ DypHis—DpHlsy==~-2 (FHy—H3), o
DY+ D=2 (Hys— H5), < . {12)
Dy Hiz— D FIiy= -2 (Hos— Hb), C oo
Dy ‘13-+D2ﬁ§2:“2 (Hy—Hi); '




| —DH+ Do~ Hay— i},
— DyH + 5 DoyHls—HogHly,
~-DyHs+ Doyt - DigHly= Hy— H,
— Dy H3 + 5 DiapHlly=Hoy—HSs,
— Do H+ % Dy fa;ﬂ$~ﬁ (o
Dy -,
%DSSH{‘3=H37;-H§’7. - _
LT _ (13)

System (11)-(13) contains 21 equations, the other 12 equa- _/144
tions had to be omitted, since all therms of these equations have
an order of 0.001. Thus, we have 21 equations to define 15 un-
knowns. But to within 12% accuracy the coefficients Hg3, Hgl and
ng on the left sides of equations .(11)~(13) can be replaced by
the dipole values

His=H,sini, Hyi=Hycosi, Hiy=--2H,sini.

EEPUN.

(14)

T LR A kthdahi I

Thus the substitution of formula (14) on the left sides of equa-
tions (11)-(13) yields an error on the order of 0.001l. The mat-
rix of coefficients of the obtained equations will coincide with
the matrix of coefficients of equations of case A in study [1].

Thus, we have come to the conclusion that to within 0.0001
system (11)-(13) has only 12 independent equations. Thus the pro-
blem of selecting the zero approximation by magnetometer readings
and using a non-dipole model of the geomagnetic field is not fully
mathematically corréct in the sense that the main terms of the
equations do not define the ahgles uniquely. O©Of course, the ad-
junction of omitted low-precision equations makes the problem
determined or even over-determined. But the use of a large num-~
ber of lé@%precision equations can produce an effect not on the

level of selecting a zero approximation, but in implementing the
7



refining process by the method of least squares or some cther sta-

tistical method.

We will transform the independent equations of system {(11)~

The order of transformation is indicated by the right sides

(13).
of the equations derived below:
Dl?iDSI%{‘T::‘f—"" gﬁz +HI"];,
- Dyy=— HEI—'HmJ:?E" i |
: B ﬂﬂ+ﬁ1w’!f1, + Jzuf,};_ﬂml)
Dys——Dy+ ”“—H‘hzﬂn—mr, o

(15)

 Hy—HY—Hot 3,
D?"’ — Hs‘)

H? 3 H 33—Hgﬁ

—_— - .
Hﬁ]

*

D23"_D1 h{ll
Hn HI‘%(H][__'H 1) Har—Hg{
” . (16}

Dyy=D _—
4 11 "o HU HD“H,-; ‘(_!21

Hy—Hy—Hys+ HY
Dyg==Dy 4 S e G
n

Hm _2(Hu—H)
H,
2 (Hyg—
Dyy=3D,, ( HI s
_ H17 H“; o Hu—Hi
it DM 2 32 -y Daq—--g T! (17) /145
Hyo—FH9.. Hay—HY.
D35-—;f—‘2"£i___l‘b—s D25: RTHO s ‘
His ¥

¥

2—2011
HH_¥

Note 1. Other versions of transformed formulas are possible.
In selecting transformations in the form ({15}~(17) the goal was pur-

sued of obtaining the smallest errors in computing the right sides.

Thus with the aid of relations (11)~{(13) the clear formula

’ - Hu—Hb 2HY; (Hp—HY) Haa—‘ (18)
A N J

PR—

e



can: be derived. On the basis of formula (18), the first formula
of system (15) and the second formula of system (16) acguire a
clearer appearance

Ny Hg, Hl?*Hm Hy—HY, H&E (Haa-Hfsa)
_.‘?ze: Dn N O TN N (19)
e -
Hld Hﬂ‘?(Hjﬁ_I_Ij2) H>4—H24 7 }-}33—{Hi3.
D%*Dm ¥ O A Bl I (20)

| PN FU R —

But test computations showed that formula (18) can yield values

which greatly differ from the values of the last formulas of no-
tation (17).

Note 2. Let us consider the individual particular cases of
satellite rotary motion. Given that the satellite makes tilting
movements in the plane of the orbit. Then %= 0, ¢ = 0 and con-

sequently, qu = 0, qu =0 (q=1, 2, 3, 4, 5). Formulas (15)-
(16) vield

y o e e N
D:u_'*—Dssa Daz_—"QH———“—H“, D= vQH“—H“

Ak 13 N My (21)

The last four formulas of notation (17) are also retained. Thus,
the zero approximation of plane pitching oscillations is fully
defined if it is true that HgB # 0 and ng # 0. This means that

the case 1 = (0 is excluded, i.e., the case of an eguatorial orbit.

Given that 6= 0, which means that D

0. By formulas (11)

3
- (13) we will find that :
D“:qﬂ§§%:” -Dm‘:H%é?%
Dyy— H;Efi?a ) Dy HM;;[Z!H
_Bm:fﬂ%‘, | Dzlz_%i&_ | (22)
Dzz__Hag;gfjgz , Dy—=— Haa;-l_;fds ,
Pt Dt



N\

Thus in this particular case, the zero approximation of angles ¥ /146
and.Q/is fully defined, if Hgl # 0. Thereby, the case of a polar
orbit i = 90° is excluded.

Note 3. From formulas (11)-(13) two guantities should va-

nish:

b= HY (Hy— 3+ 2H8 (Ho— o)+ S (Flog— Hi)—O,

(23)
=Yy (Flig—= H35)+ 23y (g~ )~ H (oo~ Hi) =0._| (24)
The fulfillment of formulas (23) and (24) by coefficients of the

trigonometric approximation can serveilas a check for applying

the suggested formulas of zero approximation.
Q

3. Optimization of the Solution of an Ificompletely
Correct Problem of Selecting the

Zero Approximation

As follows from the discussion of the preceeding section,
the correct definition of the coefficients of a trigonometric ap-
proximation of angles ¢, ¥ and & redquires additional knowledge of
three guantities Diy7 Py and Dyq- These guantities are averaged
values of the angles. 1In several cases, the average values of the
angles can be defined by averaged perturbing moments as a constant

faégttiéﬁiérféaiﬁﬁion of linearized equations of motion. The equa®
;ioné of motion in this case will be equations of relative equi~
librium of the satellite affected by gravitational, perturbing

and other moments.

We can recommend a universal method of defining the co-
efficients D4, Doy and Dy, - Since the obtained zero approxi-
mation will then be refined by statistical methods using all

10



available information, it is desirable to have a zero approximation
which is as close as possible to actual motion. We must bear in
mind that coarse computations by formulas of the zero approximation
will yield values which are chiefly greater than the actual oscil-
latory movements which the satellite experiences during oriented
motion. Consequently, it will be wise to select such values of
Dyqr Dyy and D3, as a zero approximation which yield for the use
of formulas (15)-(17) the minimal value of the function

V= pEIED {25)

g=1

The partial derivative of V with respect to D, appears as /147

aD 3D =2 (Hﬁz) 2 {DH(H&+4Hg;+2H°;)f

1 _(HQ‘) 1[(H93+4H2;+Hg)(H11—H01)
+Hg; (Hls H05)+H03H32 (H34—H34)]]

(26)

We will derive an expressi mn for the partial derivative of
V with respect to Dzl:
| aV HO —2 '.1‘ .
B0 = 2(HY)? {DQI CHYE+4HY+HY) +
o EHR) T HOLH S (Hy o+ HE 4)+(H§’;+4H123[+Hg;) (Hrg—H3)~
_"HJB(H&S“‘"’HHS)] (27)

.-7’_’"'&-‘";\'“ - - ———— e B s n

Let us find an expression for the partial derivative of V

with respect ?o D3l:

MZ(Hm) 1[D31(H "Hgi Hg;)"'
+H32(H12—H12)+—035(H° Hg;) Hfa(Haa Hzs)). (28)

Formulas (26)-(28) show that mixed derivatives are equal to
zero, and all double derivatives with respect to the same unknown

are positive. Thus the roots of the right sides of relations

11



(26)~(28) yield the minimum. In view of the linearity of the
right sides of these relatiéns;»this minimum is the only one.

Let us équate to zero the right sides of relations {(26)-(28)

Dy — (e 4 4HE + HE,) (Hy—H] 1)+H°’ (HB—H&HH'{SH by

L HEI (H{]]J+4H01+2{ig-z) . N . (29)
' —H:HY, (H14—H?4)“(Hgs"f 4Hg: J‘Haz) {HSI—‘H 1)+H (Haa—Hu AR
: - DEI'_ H?l (2H0‘3+4H21“f HOZ) e / (30)

: 1
: ‘—532 (HIQ—‘Hﬁ'z) + 2 Ds; (ng 13)+ H13(Haa*—Has}
Dy = — A -

(31)

Formulas (29) and (30) lose their meaning when Hgl =0, i.e., in

a polar orbit.

4. Solving the Problem of Selecting a Zero
Approximation with Additional Information

1. Let us assume that, as in study [1], we know the values
of angles ¥, ¢ and 6 for several points. Lét us employ formulas /148
of that study. Instead of equations (44)-(46) of study [1l], we
find that

' Dy sinuy+Dcosn, + LD%HQQ (His)™ =
1
= 7 [‘? (g)—Dyacos my — COSQM (Hy—HNW-Hyg—HE) +

Zsinuy,
+2 (H%—HM)]_M, L (32)

[P e e e e ..4__..‘~_,_..___

D” Sln Hk +D 14 Cos Hk -+ _063H32(H )

. M cos 2u
‘('U; ;2H§'xccsu [ ¢ () — D"231nuk+ HE, k(Has”Has“'Hsi—f‘Hgl) -

! : CHY (H 1Y )+H°(Hﬂu+mﬁ

Ll

L% , HLHL (14-cos 2u,)+ . (33)
HY (Hy—HY )3 HY (Hy—HD) )
+ == ]flf%lh'é'g u— ) g Qu, ] = b,

12



Dy sintiy+D, cos ity -+ DogHia(Hisy~ =

Hhs )

ZHJU [U(l’lk) D, 3 5in 22, D35( é +cos 2u, ) +
20 gy 4 Mttt

Hiy HE,
2cos up

. 2
THL (Hy—Hi)+ Hi, (Hq4 ] = B, (u,).

HGHG
(34)

On the average, system (32)-(34) is equivalent to a single egqua-
tion:

e b e - Ch s meme g

i-fn?i“_{%—;—D“cosuk-}- DzaHaﬂ(H?‘*) 1= Qk:l (35)

where, as in formula (47) of study [1],
Qp =5 (st @ut6) \ (36)

The coefficients Dll and Dl4 will be defined by formulas
{50) and (51) of the cited work,- ‘while coefficient D23 in terms
of the type of formula (52) of this study will appear as

— i 4 e C ey
0,3_ — gg}f [D11 (sm ul+smug+smua)—;— \

—i—DH{cosal-{-cosug-f—cosua) Q1 ) Qsl (37)

Taking into account formulas (15-17) and the formulas just

mentioned, we find that

\—D Q (cos {i3—C08 )+ Q4 (cos H—C0S 83)+ (cos u;—C0S I)) \

Sin (us—a )+ Sin (Uy—thg) 4 sin (tg—-it)) el (38)
‘N _ M Ha—H H
D=~ il oty Bt —/ al
Ql (ST . —Si 1) -0 (510 A ST ) Oa (Sin wy—sin ul)
sin (u3 u,)-]—sm (u14u3)+ sin (u«—u;) Y ( 39 )
LIy - P S
 Dy=—g DSS"’ T D23+ Hss H°3 . <\ (40)
¢ .

s T -~
. .

13



In the notion of (40), the coefficient D23 must be expressed through /149
formula (37).

Thus, if we know the values of angles at three points in the
orbit which have mutual angular distances not equal to 180°, the
Zero approximation,,asfspcwn by formulas (38)-(40), is uniquely

defined with the exception of cases i = 0° and 1 = 90°.

2. Given that we now know the direction of the second vec-
tor at several points in the orbit. Instead of equation (67) of
study [1], we will find that

Dll Smuk—]—DMCOSuk«I— Dgg 32(H]3) 1—
{smukcos(Sk, yo)—H% (%) c0s (S z) ™!
! X{cos(Sk, X)—CO8 {8z Xo)— Dlgcog i1y, c0S (Sp y0)+
+D34 sm2uk cos (Sk’ zo)+D35 [ H(. o COS8 (Ska yD) +

+ ( —_ J—-{- coséﬁk ) cos (Sp, z)] —

Hy—H? " H. —HS%
— COS (Sk’ yg) [ﬂ_’ sin. Ly ( 12110 - = l 33 ) -l"

- H H
+ cos2u, Hy—H? 11;1—“H1¢ Hig ] 4 cos (8 Zo) ( i 33_ -
. Hu—H?l Hy—Hi )}_—_JF
—9sinu,———"—2cosu ke
B o)

Further, instead of equation (68) of the cited work, we
will find that

i - Dyysinu Dy cosay, + -g- Dol (His) 7 =
1. . :
b= g [sin#, cOS (S Xo)—Fa (M%)t cosuy, cos (S, 271X
¥ {08 (Sg, ¥)—C0S (Sp y0)+D,§cosuk cos (S, X)— -
— Doy sin g cos (S, 20)—Dys gﬂz sin u, cos (S, X0+
21 !
- __ 0
- c0s (S 2) {7+ 9 H e Bk costy o
2 3
H?S(HII_H?I)+H (Hu qu) HSb—'Hgs

+ Hi3HY: T,
o I 0 _ .
€08 (S %) l,H.m(f{Is ‘H?ZLFS?{;EEI(HES %) sin u, +

J— e U )
Ol iz el P 2u,,]}=@k.

sin 2u, +

- €OS 2u,,} +

Hgl (42)

Finally, instead of equation (69} of study [1] we will find
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that
1 A L

~ T [C08% 008 (Sp 90) —~ T2k cos (S, x)] T x

) X{cos (Sk, z):cds (S, zo)—i-Dz2 Sin 2, cO8 (S, ¥,)—

—D,,8in 2u, cos (S,,,‘ Koy Das (%— ~c0s 21&) €08 (Sp, x5} +

P Hya—HY Hiy—HY '
cos (S, x (_ 33 43| 11 1 o
+c0s (Sp X,) T2 g sing, +

P

H
. +2 %cos u, ) — €05 (S V) [H“ Ha
. HYy (Hi—H] : Hi (Hyy—
( +2 W cos?u, + r (Fn Hi;)n:‘é::ﬂﬁag £HE) Slﬂ2uk—|—
+ﬁ—&5’ﬁ7Hﬁ cosQuk]}a&;. T
. . R (43)
We know assume the notation
‘ T —]“ e

Unknown coefficients Dyqr D,y and D3lwill be defined by formulas
]
(38)=-(40). In this context, Qk is replaced by Qk'
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- D:1Siﬁuk+D14cosuk+l—D HY (H 1 - |
5 Dy (H:) ™! = 150
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